If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+13=10a
We move all terms to the left:
a^2+13-(10a)=0
a = 1; b = -10; c = +13;
Δ = b2-4ac
Δ = -102-4·1·13
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{3}}{2*1}=\frac{10-4\sqrt{3}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{3}}{2*1}=\frac{10+4\sqrt{3}}{2} $
| 21=3×v | | 28+2x=6 | | 4x-11=7+6x | | (77-x)=(91-2x) | | (x-5)-4x=3(4x-5) | | 13x+15-x=39 | | -5r-13=9r8 | | n6− 5=2 | | 2u−4=2u= | | n6−5=2 | | 28+2x=x | | -h=-2h+20 | | 5x+15-2x=10x+50-35 | | 54=y/7 | | -7x-(-3-9x)=-0.2(14-6x) | | -2+r/4=-3 | | 75=1/2((x)*30) | | (7x-25)+(3x+5)=180 | | (3x-42)=(2x+11) | | 2.5(2n+5)=5(n+2.5) | | 6m+10=10+6m | | 2(3x-1)-3(3x-3)=4 | | -12+8n=-124 | | 28x+2x=7 | | a/4-1=-8 | | -4m+4=84+6m | | 7j+3=11j+19 | | -2x+22=-12 | | 1/2=1/2x=x+1 | | 0/1x+23.4=40.7 | | (x+28)=63 | | (d+1)/3=-6 |